Body Scan Processing, Generative Design, and Multiobjective Evaluation of Sports Bras

Author:

Bosquet Audrey,Mueller Caitlin,Hosoi A.E.

Abstract

Sports bras are critical to the comfort and performance of female athletes, yet mechanical models of sports bras are generally not used to guide their design. Typically, assessing any sports bra’s performance requires time-consuming and expensive biomechanical testing, which limits the number of designs considered. To more broadly advance knowledge on how different design properties of sports bras affect their performance, this paper presents a new design framework to explore and evaluate the sports bra design space. The framework incorporates methods for body scan analysis, fast simulation, design generation, and performance evaluation. Using these methods together enables the rapid exploration of hundreds, or thousands, of designs—each one having been evaluated on key metrics related to sports bra performance, namely, range of motion and average pressure. With this framework, designers can potentially discover a diverse set of new, high-performing sports bra concepts, as well as gain insights into how design decisions affect performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Technical Innovation in American History: An Encyclopedia of Science and Technology;Lamphier,2019

2. Sports Bra: Market Shares, Strategies, and Forecasts, Worldwide, 2020 to 2026https://www.prnewswire.com/news-releases/sports-bra-market-shares-strategies-and-forecasts-worldwide-2020-to-2026-301001764.html

3. The experience of breast pain (mastalgia) in female runners of the 2012 London Marathon and its effect on exercise behaviour

4. The Influence of the Breast on Physical Activity Participation in Females

5. Do women with smaller breasts perform better in long-distance running?

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3