The High-Velocity Impact Behaviour of Kevlar Composite Laminates Filled with Cork Powder

Author:

Amaro Ana MartinsORCID,Reis Paulo Nobre BalbisORCID,Ivañez InesORCID,Sánchez-Saez Sonia,Garcia-Castillo Shirley Kalamis,Barbero EnriqueORCID

Abstract

The literature reports benefits when the cork powder obtained from industrial by-products is used as the filler of composite laminates. For example, while the fatigue life is insensitive to the presence of cork in the resin, significant improvements are achieved in terms of to low-velocity impact strength. However, in terms of ballistic domain, the literature does not yet report any study about the effect of incorporating powdered cork into resins. Therefore, this study intended to analyse the ballistic behaviour and damage tolerance of Kevlar/epoxy reinforced composites with matrix filled by cork powder. For this purpose, high-velocity impacts were studied on plates of Kevlar bi-directional woven laminates with surfaces of 100 × 100 mm2. It was possible to conclude that the minimum velocity of perforation is 1.6% higher when the cork powder is added to the resin, but considering the dispersion, this small difference can be neglected. In terms of damage areas, they are slightly lower when cork dust is added, especially for velocities below the minimum perforation velocity. Finally, the residual bending strength shows that these composites are less sensitive to impact velocity than the samples with neat resin. In addition to these benefits, cork powder reduces the amount of resin in the composite, making it more environmentally friendly.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3