Speech Enhancement for Hearing Aids with Deep Learning on Environmental Noises

Author:

Park GyuseokORCID,Cho Woohyeong,Kim Kyu-Sung,Lee Sangmin

Abstract

Hearing aids are small electronic devices designed to improve hearing for persons with impaired hearing, using sophisticated audio signal processing algorithms and technologies. In general, the speech enhancement algorithms in hearing aids remove the environmental noise and enhance speech while still giving consideration to hearing characteristics and the environmental surroundings. In this study, a speech enhancement algorithm was proposed to improve speech quality in a hearing aid environment by applying noise reduction algorithms with deep neural network learning based on noise classification. In order to evaluate the speech enhancement in an actual hearing aid environment, ten types of noise were self-recorded and classified using convolutional neural networks. In addition, noise reduction for speech enhancement in the hearing aid were applied by deep neural networks based on the noise classification. As a result, the speech quality based on the speech enhancements removed using the deep neural networks—and associated environmental noise classification—exhibited a significant improvement over that of the conventional hearing aid algorithm. The improved speech quality was also evaluated by objective measure through the perceptual evaluation of speech quality score, the short-time objective intelligibility score, the overall quality composite measure, and the log likelihood ratio score.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3