Abstract
Hearing aids are small electronic devices designed to improve hearing for persons with impaired hearing, using sophisticated audio signal processing algorithms and technologies. In general, the speech enhancement algorithms in hearing aids remove the environmental noise and enhance speech while still giving consideration to hearing characteristics and the environmental surroundings. In this study, a speech enhancement algorithm was proposed to improve speech quality in a hearing aid environment by applying noise reduction algorithms with deep neural network learning based on noise classification. In order to evaluate the speech enhancement in an actual hearing aid environment, ten types of noise were self-recorded and classified using convolutional neural networks. In addition, noise reduction for speech enhancement in the hearing aid were applied by deep neural networks based on the noise classification. As a result, the speech quality based on the speech enhancements removed using the deep neural networks—and associated environmental noise classification—exhibited a significant improvement over that of the conventional hearing aid algorithm. The improved speech quality was also evaluated by objective measure through the perceptual evaluation of speech quality score, the short-time objective intelligibility score, the overall quality composite measure, and the log likelihood ratio score.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献