Abstract
Detecting small objects and objects with large scale variants are always challenging for deep learning based object detection approaches. Many efforts have been made to solve these problems such as adopting more effective network structures, image features, loss functions, etc. However, for both small objects detection and detecting objects with various scale in single image, the first thing should be solve is the matching mechanism between anchor boxes and ground-truths. In this paper, an approach based on multi-scale balanced sampling(MB-RPN) is proposed for the difficult matching of small objects and detecting multi-scale objects. According to the scale of the anchor boxes, different positive and negative sample IOU discriminate thresholds are adopted to improve the probability of matching the small object area with the anchor boxes so that more small object samples are included in the training process. Moreover, the balanced sampling method is proposed for the collected samples, the samples are further divided and uniform sampling to ensure the diversity of samples in training process. Several datasets are adopted to evaluate the MB-RPN, the experimental results show that compare with the similar approach, MB-RPN improves detection performances effectively.
Funder
Beijing Municipal Natural Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference19 articles.
1. Efficient HOG human detection
2. Ssd: Single shot multibox detector;Liu,2016
3. Microsoft coco: Common objects in context;Lin,2014
4. Faster r-cnn: Towards real-time object detection with region proposal networks;Ren,2015
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献