Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies

Author:

Kchaou Mohamed,Abuhasel KhaledORCID,Khadr MosaadORCID,Hosni Faouzi,Alquraish Mohammed

Abstract

Sterilization methods for individuals and facilities are extremely important to enable human beings to continue the basic tasks of life and to enable safe and continuous interaction of citizens in society when outbreaks of viral pandemics such as the coronavirus. Sterilization methods, their availability in gatherings, and the efficiency of their work are among the important means to contain the spread of viruses and epidemics and enable societies to practice their activities almost naturally. Despite the effective solutions given by traditional methods of surface disinfection, modern nanotechnology has proven to be an emergent innovation to protect against viruses. On this note, recent scientific breakthroughs have highlighted the ability of nanospray technology to attach to air atoms in terms of size and time-period of existence as a sterilizer for renewed air in large areas for human gatherings. Despite the ability of this method to control the outbreak of infections, the mutation of bactericidal mechanisms presents a great issue for scientists. In recent years, science has explored a more performant approach and techniques based on a surface-resistance concept. The most emergent is the self-defensive antimicrobial known as the self-disinfection surface. It consists of the creation of a bacteria cell wall to resist the adhesion of bacteria or to kill bacteria by chemical or physical changes. Besides, plasma-mediated virus inactivation was shown as a clean, effective, and human healthy solution for surface disinfection. The purpose of this article is to deepen the discussion on the threat of traditional methods of surface disinfection and to assess the state of the art and potential solutions using emergent nanotechnology.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3