Metal Mobility in Afforested Sites of an Abandoned Zn-Pb Ore Mining Area

Author:

Aleksander-Kwaterczak UrszulaORCID,Ciszewski Dariusz

Abstract

Heaps of waste material constitute a serious environmental problem in regions where the historical exploitation and processing of metal ores has taken place. The presented paper describes the trace metal distribution in selected heaps in the lead-zinc mining area of an abandoned mine in Poland, as well as the soil horizons beneath. The study aims at the estimation of the metal remobilization rate in vertical profiles in the spontaneously afforested area in the context of the potential danger it poses to the local groundwater. Individual samples were taken from profiles dug in heaps found in deciduous and coniferous forests. The bulk density, pH, organic matter and carbonate content, as well as the concentration and chemical forms of metals were analysed. Buffer properties and the mineralogical composition were also determined for the selected samples. The investigation indicates excessive cadmium, zinc and lead concentrations in the analysed heap material and the significant secondary enrichment of former soil horizons. A large percentage of these metals occur in potentially mobile forms. It suggests that, despite the high pH of the heap material and the good buffer properties of soil, cadmium and to a lesser extent, zinc, has migrated downwards to depths of at least several dozen centimetres over a period of about 200 years. This is related to soil acidity, particularly in profiles abundant in organic matter resulting from the encroachment of forest communities, particularly of coniferous forest. Spontaneous afforestation forming the litter cover contribute to the stabilization of the heap material and limiting groundwater pollution. Even though specific remediation measures are not needed in this area, it requires long-term monitoring.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3