Simulation-Based Generation of Representative and Valid Training Data for Acoustic Resonance Testing

Author:

Heinrich MatthiasORCID,Rabe UteORCID,Valeske BerndORCID

Abstract

Analyzing eigenfrequencies of serial parts by acoustic resonance testing enables an efficient nondestructive assessment of component quality or structural state. Usually, each application is based on experimentally acquired training data, which represent the typical natural vibration behavior of the component type to be inspected. From the training data, suitable test characteristics are identified according to the inspection objective. The experimental collection of training data, which involves selecting and characterizing numerous representing parts, is often associated with a great amount of effort. Instead, this work focuses on a simulation-based generation of synthetic training data. Within an application example, the eigenfrequencies of a set of virtual parts were calculated with FEM as a function of geometry. The resulting simulation values were adapted using empirical correction factors, which were derived from both calculated and measured eigenfrequencies of machine-made reference parts. The simulation-based data were finally used to form linear regression models within a training procedure. These models enabled the precise estimation of geometric dimensions of further machine-made parts using their measured eigenfrequencies as input data. The novel approach, which requires the experimental characterization of only a few real parts, can thus significantly reduce the effort associated with efficient and reliable acoustic resonance testing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Akustische Resonanzanalyse;Hertlin,2003

2. Akustische Resonanzverfahren zur Zerstörungsfreien Prüfung–Prinzip, Vorgehensweise, Merkmale, Validierung,2009

3. Resonance Inspection for Quality Control

4. Fundamentals of resonant acoustic method NDT;Stultz;Adv. Powder Metall. Part. Mater.,2005

5. Acoustic resonance testing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3