Optimum Design of High-Speed Single-Phase Flux Reversal Motor with Reduced Torque Ripple

Author:

Dmitrievskii VladimirORCID,Prakht VladimirORCID,Kazakbaev VadimORCID,Golovanov Dmitry

Abstract

Single-phase motors are used in low-power, cost-effective, variable-speed applications. As a replacement to traditional single-phase synchronous motors with magnets on the rotor, single-phase flux reversal motors (FRMs) with a rugged and reliable toothed rotor are considered for the high-speed applications. However, torque pulsations of single-phase motors are high. The aim of this work is to minimize the torque ripple and increase its minimum instantaneous value, as well as to reduce FRM losses. To solve this problem, an asymmetric rotor is used, and an objective function is proposed, which includes parameters characterizing the pulsations of the torque and the loss of FRM for two load conditions. To optimize the single-phase FRM and minimize the objective function, the Nelder–Mead method was applied. The optimization criterion was selected to maximize the efficiency, to reduce the torque ripple, and to the avoid the negative torque in a wide range of powers at the fan load (quadric dependence of torque on speed). Two operating loading modes are considered. After two stages of optimization, the peak-to-peak torque ripple in the FRM in the rated loading mode decreased by 1.7 times, and in the mode with reduced load by 2.7 times. In addition, in the FRM before optimization, the torque has sections with negative values, and in the FRM after optimization, the torque is positive over the entire period. Although losses in the rated mode increased by 4%, when underloaded, they decreased by 11%, which creates an additional advantage for applications that work most of the time with underload.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3