Patient-Specific Surgical Implant Using Cavity-Filled Approach for Precise and Functional Mandible Reconstruction

Author:

Moiduddin KhajaORCID,Mian Syed HammadORCID,Ameen Wadea,Alkindi MohammedORCID,Ramalingam SundarORCID,Alghamdi Osama

Abstract

Mandibular reconstruction is a complicated task because of the complex nature of the regional anatomy. Computer-assisted tools are a promising means of improving the precision and safety of such complex surgeries. The digital techniques utilized in the reconstruction of mandibular defects based on medical data, computer-aided-design approaches, and three-dimensional (3D) printing are widely used to improve the patient’s aesthetic appearance and function, as well as the accuracy and quality of diagnosis, and surgical outcomes. Nevertheless, to ensure an acceptable aesthetical appearance and functional outcomes, the design must be based on proper anatomical reconstruction, mostly done in a virtual environment by skilled design engineers. Mirroring is one of the widely used techniques in the surgical navigation and reconstruction of mandibular defects. However, there are some discrepancies and mismatches in the mirrored anatomical models. Hence, in order to overcome these limitations in the mirroring technique, a novel approach called the cavity-filled technique was introduced. The objective of this study was to compare the accuracy of the newly recommended cavity-filled technique with the widely used mirror reconstruction technique in restoring mandibular defects. A prominent 3D comparison technique was employed in this work, where the resected and the reconstructed mandibles were superimposed to quantify the accuracy of the two techniques. From the analysis, it can be inferred that the cavity-filled technique with a root-mean-square value of 1.1019 mm produced better accuracy in contrast to the mirroring approach, which resulted in an error of 1.2683 mm. Consequently, by using the proposed cavity-filled design, the discrepancy between the reconstruction plate and the bone contour was mitigated. This method, owing to its high precision, can decrease the number of adjustments and the time of surgery, as well as ensure a quick recovery time with better implant tissue in-growth.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3