Study on the Early Warning Methods of Dynamic Landslides of Large Abandoned Rockfill Slopes

Author:

Qiao Nan,Duan Yun-Ling,Shi Xiao-Meng,Wei Xue-Fei,Feng Jin-Ming

Abstract

The excavation of large-scale underground projects produces a large amount of rubble waste material that is temporarily deposited near the project site, which forms a large-scale waste rockfill artificial slope. The slope has a granular structure, thus, during excavation and trans-shipment, surface shallow landslides may frequently occur. Existing contact monitoring methods such as buried sensors and GPS (Global Position System) are difficult to apply to the monitoring of rockfill landslides. Therefore, there are no appropriate early warning methods for waste rockfill slope landslides during dynamic transfer. Here, we used ground-based interferometric synthetic aperture radar to monitor the deformation of a rockfill slope during the excavation and transfer processes as a proposed method for the early warning against landslides on rockfill slopes during dynamic construction based on the radar interference measurement results. Through data cleaning and data interpolation, the line of equal displacement was generated, and the cross-sectional area of the equal displacement bodies of landslides was calculated. In addition, we established a four-level early warning grading standard, with the rate of change of the cross-sectional area of the equal displacement body as the early warning index, and realized real-time dynamic early warning of waste rockfill landslides during excavation and transportation. Finally, five landslide examples were used to verify the proposed warning method. The results show that the warning method can make an early warning 8–14 min before the occurrence of landslide, which can effectively avoid the appearance of catastrophic events.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. State of art and Prospect of Tunnels and Underground Works in China;Kairong;Tunn. Constr.,2015

2. Study on Landslide Monitoring Experiment of Underground Chambers Spoil Area;Qiao;E&ES,2020

3. Landslide prediction, monitoring and early warning: a concise review of state-of-the-art

4. Study of displacement prediction model of landslide based on time series analysis;Xu;Chin. J. Rock Mech. Eng.,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3