Micro/Nanoplastic Exposure on Placental Health and Adverse Pregnancy Risks: Novel Assessment System Based upon Targeted Risk Assessment Environmental Chemicals Strategy

Author:

Wan Danyang123,Liu Yujie23,Chang Qianjing23,Liu Zhaofeng23,Wang Qing23,Niu Rui23,Gao Beibei23,Guan Quanquan123,Xia Yankai123ORCID

Affiliation:

1. Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China

2. State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China

3. Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China

Abstract

Micro/nanoplastics (MNPs), as emerging pollutants, have been detected in both the maternal and fetal sides of the placenta in pregnant women, and their reproductive toxicity has been demonstrated in in vivo and in vitro experimental models. The Targeted Risk Assessment of Environmental Chemicals (TRAEC) strategy has been innovatively devised to facilitate valid risk assessment, encompassing a comprehensive evaluation of reliability, correlation, outcome fitness, and integrity across four dimensions based on the included published evidence and our own findings. This study serves as an application case of TRAEC, with 40 items of research evidence on the toxicity of MNPs to the placenta, which were rigorously screened and incorporated into the final scoring system. The final score for this TRAEC case study is 5.63, suggesting a moderate-to-low risk of reproductive toxicity associated with MNPs in the placenta, which may potentially increase with decreasing particle size. It is essential to emphasize that the findings also report original data from assays indicating that exposure to high-dose groups (100 μg/mL, 200 μg/mL) of 50 nm and 200 nm polystyrene nanoplastics (PS-NPs) induces HTR8/SVneo cell cycle arrest and cell apoptosis, which lead to reproductive toxicity in the placenta by disrupting mitochondrial function. Overall, this study employed the TRAEC strategy to provide comprehensive insight into the potential reproductive health effects of ubiquitous MNPs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3