Short-Term Chronic Toxicity of Copper to Hyalella azteca: Contrast in Terms of Equilibrating Diet, Diet Type, and Organic Matter Source

Author:

Fuad Nafis1ORCID,Williams Rebecca2,Vadas Timothy M.1

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, University of Connecticut, Storrs-Mansfield, CT 06269, USA

2. Department of Civil, Construction and Environmental Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA

Abstract

The most up-to-date regulatory guidelines for establishing acute and chronic numeric limits for copper in freshwaters are based on a biotic ligand model for various species, but the model for Cu lacks data on dietary uptake. In addition, some common macroinvertebrate toxicity assay parameters are less representative of the ecosystem. We investigated the effects of diet and its type in the experimental setup and as an exposure pathway to an established amphipod (crustacean) Hyalella azteca (H. azteca) for Cu toxicity assays. We also investigated another overlooked aspect, the organic matter (OM) source. Our experiments compared the toxicity of pre-equilibrated and unequilibrated natural diets and a laboratory-favored diet in effluent and stormwater sources of organic matter adjusted to standard water characteristics. The experiments indicated a more toxic effect of the pre-equilibrated diet and natural dietary sources, and less toxic effects in the presence of effluent OM compared with stormwater OM, shifting LC50 or EC20 values by as much as 67% compared with the controls. The use of a pre-equilibrated natural diet in toxicity assays provides the advantage of producing toxicity data more representative of field conditions. Considering organic matter type, especially in dietary exposures, will better predict toxicity, accounting for copper complexation with OM from different sources and partitioning to the food supply. Adapting these ecologically relevant parameters in whole effluent toxicity testing or other assays will also provide safer regulatory oversite of discharges to surface waters.

Funder

NSF CAREER Grant

Publisher

MDPI AG

Reference44 articles.

1. Nriagu, J.O. (1979). Copper in the Environment, Wiley.

2. A history of global metal pollution;Nriagu;Science,1996

3. The natural environment and the biogeochemical cycles;Hutzinger;The Handbook of Environmental Chemistry,1985

4. Environmental chemistry of copper in Torch Lake, Michigan;Lopez;Water Air Soil Pollut.,1977

5. The aqueous geochemistry of the Berkeley Pit, Butte, Montana, U.S.A;Davis;Appl. Geochem.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3