Pollution Characteristics and Health Risks of Polycyclic Aromatic Compounds (PACs) in Soils of a Coking Plant

Author:

Zhou Yousong1,Li Yuancheng2,Fu Donglei1,Zhang Yongqiang1,Xiao Kai1,Jiang Ke1ORCID,Luo Jinmu3,Shen Guofeng1ORCID,Liu Wenxin1,Tao Shu1

Affiliation:

1. Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

2. School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 271016, China

3. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA

Abstract

Coke production is an important source of environmental polycyclic aromatic compounds (PACs), including parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives. The focus near coking plants has primarily been on parent-PAH contamination, with less attention given to highly toxic derivatives. In this study, soil samples were collected from both within and outside of a coking plant. The concentrations of parent-PAHs and their derivatives, including methylated-PAHs, oxygenated-PAHs, and nitrated-PAHs, were examined. Spatial interpolation was employed to determine their spatial distribution patterns. Methods for identifying potential sources and conducting incremental lifetime cancer risk analysis were used. This could achieve a comprehensive understanding of the status of PAC pollution and the associated health risks caused by coke production. The concentrations of total PACs inside the plant ranged from 7.4 to 115.8 mg/kg, higher than those outside (in the range of 0.2 to 65.7 mg/kg). The spatial distribution of parent-PAH concentration and their derivatives consistently decreased with increasing distance from the plant. A significant positive correlation (p < 0.05) among parent-PAHs and their derivatives was observed, indicating relatively consistent sources. Based on diagnostic ratios, the potential emission sources of soil PACs could be attributed to coal combustion and vehicle emissions, while principal component analysis–multiple linear regression further indicated that primary emissions and secondary formation jointly influenced the PAC content, accounting for 60.4% and 39.6%, respectively. The exposure risk of soil PACs was dominated by 16 priority control PAHs; the non-priority PAHs’ contribution to the exposure risk was only 6.4%.

Funder

China National Natural Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3