Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake

Author:

Cui Zhimou123,Zhao Shengnan123,Shi Xiaohong123,Lu Junping12,Liu Yu123,Liu Yinghui12,Zhao Yunxi123

Affiliation:

1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China

3. State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China

Abstract

Mercury and arsenic are two highly toxic pollutants, and many researchers have explored the effects of the two substances on the environment. However, the research content of toxic substances in frozen periods is relatively small. To explore the spatial and vertical distribution of mercury and arsenic in the ice, water, and sediments of Wuliangsuhai Lake under ice conditions, and to assess the harm degree of the two toxic substances to human beings. We collected the ice, water, and sediments of the lake in December 2020, and tested the contents of Hg and As. The single-factor pollution index method, the local cumulative index method, and the ecological risk coding method were used to assess the pollution status in these three environmental media, and the Monte Carlo simulation combined with the quantitative model recommended by USEPA was used to assess the population health risk. The results showed that (1) The average single-factor pollution values of Hg and As in water were 0.367 and 0.114, both pollutants were at clean levels during the frozen period. (2) The mean Igeo values of Hg and As were 0.657 and −0.948. The bioavailability of Hg in the sediments of Wuliangsuhai Lake during the frozen period was high, and its average value was 7.8%, which belonged to the low-risk grade. The bioavailability of As ranged from 0.2% to 3.7%, with an average value of 1.3%. (3) Monte Carlo simulation results indicate acceptable levels of health risks in both water and ice. This study preliminarily investigated the distribution characteristics of toxic substances and their potential effects on human health in lakes in cold and arid regions during the frozen period. It not only clarified the pollution characteristics of lakes in cold and arid regions during the frozen period, but also provided beneficial supplements for the ecological protection of lake basins. This study lays a foundation for further environmental science research in the region in the future.

Funder

National Natural Science Foundation of China

The Inner Mongolia Autonomous Region Science and Technology Plan

Inner Mongolia Autonomous Region Education Department science and technology talent project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3