A Modified Model for Quantitative Heavy Metal Source Apportionment and Pollution Pathway Identification

Author:

Wang Maodi1,Yu Pengyue1,Tong Zhenglong1,Shao Xingyuan1,Peng Jianwei1,Hamid Yasir2ORCID,Huang Ying1ORCID

Affiliation:

1. National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China

2. Ministry of Education (MOE) Key Lab of Environment, Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China

Abstract

Current source apportionment models have successfully identified emission sources and quantified their contributions. However, when being utilized for heavy metal source apportion in soil, their accuracy needs to be improved, regarding migration patterns. Therefore, this work intended to improve the pre-existing principal component analysis and multiple linear regression with distance (PCA-MLRD) model to effectively locate pollution pathways (traffic emissions, irrigation water, atmospheric depositions, etc.) and achieve a more precise quantification. The dataset of soil heavy metals was collected from a typical area in the Chang-Zhu-Tan region, Hunan, China in 2021. The identification of the contribution of soil parent material was accomplished through enrichment factors and crustal reference elements. Meanwhile, the anthropogenic emission was identified with principal component analysis and GeoDetector. GeoDetector was used to accurately point to the pollution source from a spatial differentiation perspective. Subsequently, the pollution pathways linked to the identified sources were determined. Non-metal manufacturing factories were found to be significant anthropogenic sources of local soil contamination, mainly through rivers and atmospheric deposition. Furthermore, the influence of irrigation water on heavy metals showed a more pronounced effect within a distance of 1000 m, became weaker after that, and then gradually disappeared. This model may offer improved technical guidance for practical production and the management of soil heavy metal contamination.

Funder

Natural Science Foundation of Hunan Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3