Bisphenol Chemicals in Surface Soil from E-Waste Dismantling Facilities and the Surrounding Areas: Spatial Distribution and Health Risk

Author:

Zhao Lei1,Zhou Fengli1,Wang Shuyue1,Yang Yan234ORCID,Chen Haojia234,Ma Xufang1ORCID,Liu Xiaotu1ORCID

Affiliation:

1. Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China

2. School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China

3. Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China

4. Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China

Abstract

Electronic waste (e-waste) dismantling facilities are well-known bisphenol chemical (BP) sources. In this study, non-targeted screening combined with targeted analysis of BPs in surface soil from e-waste dismantling facilities and their surroundings revealed their presence, distribution, and exposure risk. A total of 14 BPs were identified including bisphenol A (BPA) and its novel structural analogs and halogenated BPs. The total concentrations of BPs ranged from 963 to 47,160 ng/g (median: 6970 ng/g) in e-waste soil, higher than those measured in surface soil from surrounding areas, i.e., 10–7750 ng/g (median 197 ng/g). BPA, tetrabromobisphenol A (TBBPA), and bisphenol F (BPF) were the dominant ones from the two areas. Concentrations of TBBPA and its debromination product from the surrounding area significantly decreased with increasing distances from the e-waste dismantling facilities. Estimation of daily intake via oral ingestion of soil suggests that current contamination scenarios are unlikely to pose health risks for e-waste dismantling workers and adults and toddlers living in the surrounding areas, with their intakes generally well below the tolerable daily intakes proposed for several BPs. However, the BPA intakes of workers exceeded the more strict tolerable daily intake for BPA established recently, which merits continuous environmental surveillance.

Funder

National Natural Science Foundation of China

ational Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3