Study on the Direct and Indirect Photolysis of Antibacterial Florfenicol in Water Using DFT/TDDFT Method and Comparison of Its Reactivity with Hydroxyl Radical under the Effect of Metal Ions

Author:

Kang Yue1,Lu Ying1,Wang Se1ORCID

Affiliation:

1. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Florfenicol (FLO) is a widely used antibacterial drug, which is often detected in the environment. In this paper, the photolysis mechanism of FLO in water was investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The focus of the study is to elucidate the direct photolysis mechanism of FLO in the water environment and the indirect photolysis of free radicals (·OH, ·NO3, and ·SO4−) as active species. The effect of metal ions Ca2+/Mg2+/Zn2+ on the indirect photolysis was also investigated. The results show that the direct photolysis of FLO involves C–C/C–N/C–S bond cleavage, the C5–S7 bond cleavage is most likely to occur, and the C17–C18 cleavage reaction is not easy to occur during the direct photodegradation of FLO. The indirect photolysis of FLO is more likely to occur in the environment than direct photolysis. The main indirect photolysis involves OH-addition, NO3-addition, and SO4-addition on benzene ring. The order of difficulty in the indirect photolysis with ·OH is C2 > C3 > C4 > C5 > C6 > C1, Ca2+ can promote the indirect photolysis with ·OH, and Mg2+/Zn2+ has a dual effect on the indirect photolysis with ·OH. In other words, Mg2+ and Zn2+ can inhibit or promote the indirect photolysis with ·OH. These studies provide important information for theoretical research on the environmental behavior and degradation mechanism of drug molecules.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference44 articles.

1. An evaluation of the relative efficacy of tulathromycin for the treatment of undifferentiated fever in feedlot calves in Nebraska;Schunicht;Can. Vet. J.-Rev. Vet. Can.,2007

2. The therapeutic effect of florfenicol-loaded carboxymethyl chitosan-gelatin shell nanogels against Escherichia coli infection in mice Running title: Therapeutic effect of florfenicol shell nanogels;Leng;J. Mol. Struct.,2022

3. Florfenicol-Polyarginine Conjugates Exhibit Promising Antibacterial Activity Against Resistant Strains;Li;Front. Chem.,2022

4. Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants;Liu;J. Vet. Sci.,2022

5. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine, in dogs;Park;Res. Vet. Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3