Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water

Author:

Lu Guanglu1,Li Xinjuan1,Lu Peng1,Guo He2,Wang Zimo3,Zhang Qian1,Li Yuchao4,Sun Wenbo1,An Jiutao1ORCID,Zhang Zijian1

Affiliation:

1. College of Resources and Environment Engineering, Shandong University of Technology, Zibo 255000, China

2. Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

3. Department of Marine Engineering, Jimei University, Xiamen 361021, China

4. Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China

Abstract

A Z-type heterojunction MnO2@g-C3N4 photocatalyst with excellent performance was synthesized by an easy high-temperature thermal polymerization approach and combined with peroxymonosulfate (PMS) oxidation technology for highly efficient degrading of tetracycline hydrochloride (TC). Analysis of the morphological structural and photoelectric properties of the catalysts was achieved through different characterization approaches, showing that the addition of MnO2 heightened visible light absorption by g-C3N4. The Mn1-CN1/PMS system showed the best degradation of TC wastewater, with a TC degradation efficiency of 96.97% following 180 min of treatment. This was an approximate 38.65% increase over the g-C3N4/PMS system. Additionally, the Mn1-CN1 catalyst exhibited excellent stability and reusability. The active species trapping experiment indicated •OH and SO4•− remained the primary active species to degrade TC in the combined system. TC degradation pathways and intermediate products were determined. The Three-Dimensional Excitation-Emission Matrix (3DEEM) was employed for analyzing changes in the molecular structure in TC photocatalytic degradation. The biological toxicity of TC and its degradation intermediates were investigated via the Toxicity Estimation Software Test (T.E.S.T.). The research offers fresh thinking for water environment pollution treatment.

Funder

Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3