Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies

Author:

Gao Zihao12,Zheng Yu12,Li Zhendong12,Ruan Aidong13ORCID

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China

2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

3. College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China

Abstract

17β-Estradiol (E2) is a widely present trace pollutant in aquatic environments. However, its impact on microbial communities in aerobic lake waters, which are crucial for methane (CH4) production, remains unclear. This study conducted an E2 contamination experiment by constructing laboratory-simulated aerobic microecosystems. Using 16S rRNA high-throughput sequencing, the effects of E2 on bacterial and archaeal communities were systematically examined. Combined with gas chromatography, the patterns and mechanisms of E2’s impact on CH4 emissions in aerobic aquatic systems were uncovered for the first time. Generally, E2 contamination increased the randomness of bacterial and archaeal community assemblies and weakened microbial interactions. Furthermore, changes occurred in the composition and ecological functions of bacterial and archaeal communities under E2 pollution. Specifically, two days after exposure to E2, the relative abundance of Proteobacteria in the low-concentration (L) and high-concentration (H) groups decreased by 6.99% and 4.01%, respectively, compared to the control group (C). Conversely, the relative abundance of Planctomycetota was 1.81% and 1.60% higher in the L and H groups, respectively. E2 contamination led to an increase in the relative abundance of the methanogenesis functional group and a decrease in that of the methanotrophy functional group. These changes led to an increase in CH4 emissions. This study comprehensively investigated the ecotoxicological effects of E2 pollution on microbial communities in aerobic water bodies and filled the knowledge gap regarding aerobic methane production under E2 contamination.

Funder

National Natural Science Foundation of China

Zihao Gao

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3