Modulatory Role of Biochar Properties and Environmental Risk of Heavy Metals by Co-Pyrolysis of Fenton Sludge and Biochemical Sludge

Author:

Li Yujian1,Kang Mengen1ORCID,Wang Yuting1,Bai Xue12ORCID,Ye Zhengfang3

Affiliation:

1. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China

2. Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China

3. Key Laboratory of Water and Sediment Sciences, Department of Environmental Engineering, Peking University, Ministry of Education, Beijing 100871, China

Abstract

Recent studies have reported that Fenton sludge and biochemical sludge contain high concentrations of toxic substances and heavy metals (HMs), whereas improper treatment can pose serious threats to environmental safety. Pyrolysis is considered an efficient technology to replace conventional sludge treatment. This study investigated the pyrolysis and kinetic processes of Fenton sludge and biochemical sludge, revealed the physicochemical properties of sludge biochar, and highlighted the role of co-pyrolysis in sludge immobilization of HMs and environmental risks. Results showed that Fenton sludge and biochemical sludge underwent three stages of weight loss during individual pyrolysis and co-pyrolysis, especially co-pyrolysis, which increased the rate of sludge pyrolysis and reduced the decomposition temperature. The kinetic reaction indicated that the activation energies of Fenton sludge, biochemical sludge, and mixed sludge were 11.59 kJ/mol, 8.50 kJ/mol, and 7.11 kJ/mol, respectively. Notably, co-pyrolysis reduced the activation energy of reactions and changed the specific surface area and functional group properties of the biochar produced from sludge. Meanwhile, co-pyrolysis effectively immobilized Cu, Pb, and Zn, increased the proportion of metals in oxidizable and residual states, and mitigated the environmental risks of HMs in sludge. This study provided new insights into the co-pyrolysis properties of sludge biochar and the risk assessment of HMs.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3