Hormesis, the Individual and Combined Phytotoxicity of the Components of Glyphosate-Based Formulations on Algal Growth and Photosynthetic Activity

Author:

Klátyik Szandra1ORCID,Takács Eszter1,Barócsi Attila2ORCID,Lenk Sándor2ORCID,Kocsányi László2,Darvas Béla3,Székács András1ORCID

Affiliation:

1. Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary

2. Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

3. Hungarian Society of Ecotoxicology, H-1022 Budapest, Hungary

Abstract

The occurrence of the market-leading glyphosate active ingredient in surface waters is a globally observed phenomenon. Although co-formulants in pesticide formulations were considered inactive components from the aspects of the required main biological effect of the pesticide, several studies have proven the high individual toxicity of formulating agents, as well as the enhanced combined toxicity of the active ingredients and other components. Since the majority of active ingredients are present in the form of chemical mixtures in our environment, the possible combined toxicity between active ingredients and co-formulants is particularly important. To assess the individual and combined phytotoxicity of the components, glyphosate was tested in the form of pure active ingredient (glyphosate isopropylammonium salt) and herbicide formulations (Roundup Classic and Medallon Premium) formulated with a mixture of polyethoxylated tallow amines (POEA) or alkyl polyglucosides (APG), respectively. The order of acute toxicity was as follows for Roundup Classic: glyphosate < herbicide formulation < POEA. However, the following order was demonstrated for Medallon Premium: herbicide formulation < glyphosate < APG. Increased photosynthetic activity was detected after the exposure to the formulation (1.5–5.8 mg glyphosate/L and 0.5–2.2 mg POEA/L) and its components individually (glyphosate: 13–27.2 mg/L, POEA: 0.6–4.8 mg/L), which indicates hormetic effects. However, decreased photosynthetic activity was detected at higher concentrations of POEA (19.2 mg/L) and Roundup Classic (11.6–50.6 mg glyphosate/L). Differences were demonstrated in the sensitivity of the selected algae species and, in addition to the individual and combined toxicity of the components presented in the glyphosate-based herbicides. Both of the observed inhibitory and stimulating effects can adversely affect the aquatic ecosystems and water quality of surface waters.

Funder

Hungarian National Research, Development and Innovation Office within the National Competitiveness and Excellence Program

Development of the Agrotechnology National Laboratory

Hungarian Ministry of Culture and Innovation

Hungarian Scientific Research Fund

Research Excellence Program 2024 of Hungarian University of Agriculture and Life Sciences

János Bolyai Scholarship of the Hungarian Academy of Sciences

New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3