Evaluating the Response of the Soil Bacterial Community and Lettuce Growth in a Fluorine and Cadmium Co-Contaminated Yellow Soil

Author:

Wang Mei12ORCID,Chen Xiangxiang1,Hamid Yasir2,Yang Xiaoe2

Affiliation:

1. School of China Alcoholic Drinks, Luzhou Vocational and Technical College, Luzhou 646000, China

2. Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

Abstract

The impact of cadmium (Cd) and fluorine (F) on plant and human health has provoked significant public concern; however, their combined effects on plant and soil bacterial communities have yet to be determined. Here, a pot experiment was conducted to evaluate the effects of exogenous F, Cd, and their combination (FCd) on lettuce growth and soil bacterial communities. The results revealed that F and Cd concentrations in lettuce ranged from 63.69 to 219.45 mg kg−1 and 1.85 to 33.08 mg kg−1, respectively, presenting lower values in shoots than in the roots. Moreover, low contamination levels had no discernable influence on lettuce growth, but showed a synergistic negative on plant biomass when exogenous F and Cd exceeds 300 and 1.0 mg kg−1, respectively. The results of 16S rRNA gene sequencing indicated that the most abundant bacterial community at the phylum level was Proteobacteria, with the relative abundance ranging from 33.42% to 44.10% across all the treatments. The contaminants had little effect on bacterial richness but impacted the structure of bacterial communities. The PCoA showed that compartment and contaminants were the primary contributors to the largest source of community variation, while the VPA indicated that F and Cd synergistically affected the bacterial communities. In turn, lettuce plants could enhance the resistance to the combined stress by increasing the relative abundance of Oxyphotobacteria, Subgroup 6, Thermoleophilia, and TK10 classes in the rhizosphere.

Funder

research project of Luzhou Vocational and Technical College in 2024

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3