Affiliation:
1. Institute of Environmental Biotechnology and Functional Materials, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
2. Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China
3. Environment Research Institute, Shandong University, Qingdao 266237, China
4. Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao 266237, China
Abstract
Persulfate-based advanced oxidation process has been proven to be a promising method for the toxic pesticide chlorpyrifos (CPY) degradation in wastewater treatment. However, due to the limitation for the short-lived intermediates detection, a comprehensive understanding for the degradation pathway remains unclear. To address this issue, density functional theory was used to analyze the degradation mechanism of CPY at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level, and computational toxicology methods were employed to explore the toxicity of CPY and its degradation products. Results show that hydroxyl radicals (·OH) and sulfate radicals (SO4•−) initiate the degradation reactions by adding to the P=S bond and abstracting the H atom on the ethyl group, rather than undergoing α-elimination of the pyridine ring in the persulfate oxidation process. Moreover, the addition products were attracted and degraded by breaking the P–O bond, while the abstraction products were degraded through dealkylation reactions. The transformation products, including 3,5,6-trichloro-2-pyridynol, O,O-diethyl phosphorothioate, chlorpyrifos oxon, and acetaldehyde, obtained through theoretical calculations have been detected in previous experimental studies. The reaction rate constants of CPY with ·OH and SO4•− were 6.32 × 108 and 9.14 × 108 M−1·s−1 at room temperature, respectively, which was consistent with the experimental values of 4.42 × 109 and 4.5 × 109 M−1 s−1. Toxicity evaluation results indicated that the acute and chronic toxicity to aquatic organisms gradually decreased during the degradation process. However, some products still possess toxic or highly toxic levels, which may pose risks to human health. These research findings contribute to understanding the transformation behavior and risk assessment of CPY in practical wastewater treatment.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Science and Technology Development Program of Weifang City
Science and Technology Development Program of Shouguang City
Fundamental Research Funds of Weifang University of Science and Technology