Persulfate–Based Advanced Oxidation Process for Chlorpyrifos Degradation: Mechanism, Kinetics, and Toxicity Assessment

Author:

Xu Youxin12,Zhang Chenxi2,Zou Haobing2,Chen Guangrong2,Sun Xiaomin3,Wang Shuguang14,Tian Huifang1

Affiliation:

1. Institute of Environmental Biotechnology and Functional Materials, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China

2. Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China

3. Environment Research Institute, Shandong University, Qingdao 266237, China

4. Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao 266237, China

Abstract

Persulfate-based advanced oxidation process has been proven to be a promising method for the toxic pesticide chlorpyrifos (CPY) degradation in wastewater treatment. However, due to the limitation for the short-lived intermediates detection, a comprehensive understanding for the degradation pathway remains unclear. To address this issue, density functional theory was used to analyze the degradation mechanism of CPY at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level, and computational toxicology methods were employed to explore the toxicity of CPY and its degradation products. Results show that hydroxyl radicals (·OH) and sulfate radicals (SO4•−) initiate the degradation reactions by adding to the P=S bond and abstracting the H atom on the ethyl group, rather than undergoing α-elimination of the pyridine ring in the persulfate oxidation process. Moreover, the addition products were attracted and degraded by breaking the P–O bond, while the abstraction products were degraded through dealkylation reactions. The transformation products, including 3,5,6-trichloro-2-pyridynol, O,O-diethyl phosphorothioate, chlorpyrifos oxon, and acetaldehyde, obtained through theoretical calculations have been detected in previous experimental studies. The reaction rate constants of CPY with ·OH and SO4•− were 6.32 × 108 and 9.14 × 108 M−1·s−1 at room temperature, respectively, which was consistent with the experimental values of 4.42 × 109 and 4.5 × 109 M−1 s−1. Toxicity evaluation results indicated that the acute and chronic toxicity to aquatic organisms gradually decreased during the degradation process. However, some products still possess toxic or highly toxic levels, which may pose risks to human health. These research findings contribute to understanding the transformation behavior and risk assessment of CPY in practical wastewater treatment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Science and Technology Development Program of Weifang City

Science and Technology Development Program of Shouguang City

Fundamental Research Funds of Weifang University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3