Fractionation and Characterization of Metallic Elements in Soils in Land Use Systems

Author:

Haq Farid Ul1,Faridullah Faridullah1,Irshad Muhammad1,Bacha Aziz Ur Rahim2ORCID,Hafeez Farhan1ORCID,Ullah Zahid3,Iqbal Akhtar1ORCID,Arifeen Awais1,Nabi Iqra2,Alrefaei Abdulwahed Fahad4ORCID,Almutairi Mikhlid H.4ORCID

Affiliation:

1. Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan

2. State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China

3. State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

4. Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Land use has a great impact on soil dynamics. The soils of various land use systems in Central Karakoram have been under immense pressure in the recent past due to certain anthropogenic activities such as land use practices and land use cover changes. These influences have an impact on the spatial distribution of metallic elements (MEs) in the soils of various land uses. Herein, we investigated the occurrence of the MEs, copper (Cu), zinc (Zn), and nickel (Ni), in soils of various land uses such as the permafrost, pasture, forest, and agricultural lands of the Central Karakorum region. The MEs were extracted in exchangeable, adsorbed, organically bound, carbonated, precipitated, and residual forms. The concentrations of MEs showed a significant dependence on the extraction method used, and the extraction trend followed the order of EDTA > HNO3 > KNO3 > NaOH > H2O. Zn showed the highest concentration compared to Ni and Cu in all extractions, whereas the land uses’ ME concentration followed the order of agricultural land > permafrost > forest > pasturelands. The highest values of total Zn, Ni, and Cu were 712 ± 01 mg/kg, 656 ± 02 mg/kg, and 163 ± 02 mg/kg, respectively, in agricultural soil. The ME concentration showed significant variations between different land uses, and the highest concentration was noted in agricultural soil. Zn was found to be a dominant ME compared to Ni and Cu. We believe this effort will provide opportunities for scholars to investigate MEs around the globe.

Funder

Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3