Measuring Respirable Crystalline Silica (Quartz) from Powdery Materials through Sedimentation and X-ray Diffractometry

Author:

Tuomi Tapani1,Lyyränen Jussi1

Affiliation:

1. Finnish Institute of Occupational Health, Topeliuksenkatu 41 B, Työterveyslaitos, FI-00032 Helsinki, Finland

Abstract

When possible, choosing materials with a low quartz content is the most effective and cost-efficient way to prevent the respirable quartz exposure of workers and other end users of powdery products. Therefore, methods are needed to analyze low amounts of quartz from powdery products, such as sand, gravel, plaster, cement, and concrete. To this end, we present a method to analyze respirable dust and quartz from powdered materials, such as construction products. The method includes separation of the respirable dust fraction by liquid sedimentation, followed by gravimetric analysis and determination of the crystalline silica content by X-ray diffractometry. While also aiding in the development of less harmful products, analysis of the quartz concentration of powdery products is statutory in Eu countries, excluding natural products not chemically modified. According to EU Regulation No. 1272/2008, products must be classified if they contain harmful substances in concentrations above 0.1 wt.%, and clauses pertaining to cancerous properties and harmfulness to lungs should be included. Also, mineral producers in the EU recommend that products containing respirable quartz should be labelled based on their quartz concentration, provided the concentration exceeds 1 wt.%. The present method meets these needs. The analysis can be performed in parallel from 50 to 1000 mg (dry weight) of powdery materials. The quantitative limit of determination was 10 µg per sample, corresponding to 0.01 wt.%, and the linear range 0.02–10 wt.% (10–5000 µg quartz per sample, Pearson correlation coefficient 0.99). The accuracy of the method was 82% and the repeatability 11%.

Publisher

MDPI AG

Reference26 articles.

1. Asbestosis and silicosis;Wagner;Lancet,1997

2. Exposure-response analysis and risk assessment for silica and silicosis mortality in a pooled analysis of six cohorts;Mannetje;Occup. Environ. Med.,2002

3. Crystalline silica exposure and lung cancer mortality in diatomaceous earth industry workers: A quantitative risk assessment;Rice;Occup. Environ. Med.,2001

4. Lung cancer mortality among construction workers: Implications for early detection;Dement;Occup. Environ. Med.,2020

5. Application of good practices as described by the NEPSI agreement coincides with a strong decline in the exposure to respiratory crystalline silica in Finnish workplaces;Tuomi;Ann. Occup. Hyg.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3