Effects of Fireworks Burning on Air Quality during the Chinese Spring Festival—Evidence from Zhengzhou, China

Author:

Liu Xinzhan12,Yang Ling12ORCID,Wang Yan12,Yan Pengfei12,Lu Yimeng12

Affiliation:

1. College of Geography and Environmental Science, Henan University, Kaifeng 475004, China

2. Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China

Abstract

Fireworks burning significantly degrades air quality over a short duration. The prohibition of fireworks burning (POFB) policy of 2016 and the restricted-hours fireworks burning (RHFB) policy of 2023 in Zhengzhou City provide an ideal opportunity to investigate the effects of such policies and of fireworks burning on air quality during the Spring Festival period. Based on air quality ground-based monitoring data and meteorological data for Zhengzhou City, the article analyzes the impact of the POFB policy and the RHFB policy on air quality. The results show that: (1) The ban on fireworks burning significantly affects Spring Festival air quality, with a decrease of 16.0% in the Air Quality Index (AQI) value in 2016 compared to 2015 and a 74.9% increase in 2023 compared to 2022. (2) From 2016 to 2022, the Spring Festival period witnessed a substantial decrease in average concentration of main pollutants, along with a delayed occurrence of peak concentrations, indicating a noticeable “peak-shaving” effect. However, in 2023, there was an increase in pollutant concentrations, volatility, and a significant surge in hourly concentration. (3) The POFB policy and RHFB policy notably impacted PM2.5 and PM10, with a decrease of 16.1% and 23.6% in PM2.5 and PM10 concentrations, respectively, in 2016 compared to 2015, but an increase of 74.5% and 79.2%, respectively, in 2023 compared to 2022. (4) The contribution of fireworks burning to PM2.5 concentrations significantly decreased during the fireworks burning period (FBP) in 2016 after the POFB policy and increased significantly in 2023 during FBP after the implementation of the RHFB policy. Unfavorable meteorological conditions will undoubtedly exacerbate air quality pollution caused by fireworks burning.

Funder

Henan Province Science and Technology Research Planning Project

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3