Natural Pyrethrin-Induced Oxidative Damage in Human Liver Cells through Nrf-2 Signaling Pathway

Author:

Yang Yun12,Wei Xiaoyi3,Ying Mengchao12,Huang Haiyan4,Sha Yijie12,Hong Xinyu12,Xiao Ping12,Tao Gonghua12

Affiliation:

1. Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China

2. State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200233, China

3. Department of Food Science, College of Hospitality of Management, Shanghai Business School, Shanghai 200235, China

4. Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China

Abstract

Natural pyrethrins (NPs), one kind of bio-pesticide, have been widely used in organic agriculture and ecological environment studies. Studies have shown that NPs may affect the metabolism of rat liver and human hepatocytes; nevertheless, the toxic effects of NPs on the liver and the related mechanisms are still incompletely understood. In this research, we utilized three types of human liver cells to investigate the mechanism of NPs’ induction of oxidative stress. The results showed that NPs exhibit noteworthy cytotoxic effects on human liver cells. These effects are characterized by the induction of LDH release, mitochondrial collapse, and an increased production of ROS and MDA content, subsequently activating the Kelch-like ECH-associated protein 1/Nuclear factor erythroid 2- related factor 2 (Keap1/Nrf-2) pathway. The ROS inhibitor N-acetyl-L-cysteine (NAC) can alleviate ROS/Nrf2-mediated oxidative stress. In addition, the siRNA knockdown of Nrf-2 exacerbated the injury, including ROS production, and inhibited cell viability. In summary, the ROS-mediated Keap1/Nrf-2 pathway could be an important regulator of NP-induced damage in human liver cells, which further illustrates the hepatotoxicity of NPs and thereby contributes to the scientific basis for further exploration.

Funder

Shanghai Sailing Program

Three-year action plan of Shanghai Public Health System Construction

Special fund of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants

Special fund for clinical research in health industry of Shanghai Municipal Health Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3