Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS)

Author:

Britton Katy N.1ORCID,Judson Richard S.2,Hill Bridgett N.3,Jarema Kimberly A.4ORCID,Olin Jeanene K.5ORCID,Knapp Bridget R.3ORCID,Lowery Morgan5,Feshuk Madison6ORCID,Brown Jason7ORCID,Padilla Stephanie5ORCID

Affiliation:

1. Oak Ridge Associated Universities Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

2. Center for Computational Toxicology and Exposure, Computational Toxicology and Bioinformatics Branch, Research Triangle Park, NC 27711, USA

3. Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

4. Center for Public Health and Environmental Assessment, Immediate Office, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

5. Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

6. Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Data Extraction and Quality Evaluation Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

7. Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Application Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Abstract

Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration–response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 μM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 μM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3