Rapid Detection of Glucose on Nanostructured Gold Film Biosensor by Surface-Enhanced Raman Spectroscopy

Author:

Sung Cheng-JuORCID,Chao Szu-Han,Hsu Shih-ChiehORCID

Abstract

In this report, we summarized our development of biosensors for Rhodamine 6G and in vitro glucose detection based on surface-enhanced Raman scattering technology. For the detection of both Rhodamine 6G and in vitro glucose, a nature-patterned substrate with gold films over nanostructures (NPS-AuFON) was used as the surface-enhanced Raman scattering sensor platform. The enhancement factor was calculated at 9 × 107. In the processing of the substrate, cyclic voltammetry was used to form nano-gold particles under different conditions. The Rhodamine 6G and glucose detection were then achieved on this substrate. Furthermore, we combined the potentiostatic technique and electrochemical adsorption to best detect glucose in low concentrations. The glucose oxidation potential (100 mV) was used to capture glucose close to the surface of the NPS-AuFON. The quantitative detection of glucose in solution and in situ inspection were confirmed. Further, we determined that this surface modification technology can reach the goal of experiments set by the World Health Organization to judge whether or not a patient is a diabetic by detecting a glucose concentration of 11.1 mmol/L (mg/dL) at a minimum.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3