Efficient Internet-of-Things Cyberattack Depletion Using Blockchain-Enabled Software-Defined Networking and 6G Network Technology

Author:

Razaque Abdul1ORCID,Yoo Joon1ORCID,Bektemyssova Gulnara2ORCID,Alshammari Majid3ORCID,Chinibayeva Tolganay T.2,Amanzholova Saule4,Alotaibi Aziz3ORCID,Umutkulov Dauren2

Affiliation:

1. School of Computing, Gachon University, Seongnam 13120, Republic of Korea

2. Department of Computer Engineering and Information System, International Information Technology University, Almaty 050000, Kazakhstan

3. Computers and Information Technology College, Taif University, Taif 26571, Saudi Arabia

4. Department of Cybersecurity, International Information Technology University, Almaty 050000, Kazakhstan

Abstract

Low-speed internet can negatively impact incident response by causing delayed detection, ineffective response, poor collaboration, inaccurate analysis, and increased risk. Slow internet speeds can delay the receipt and analysis of data, making it difficult for security teams to access the relevant information and take action, leading to a fragmented and inadequate response. All of these factors can increase the risk of data breaches and other security incidents and their impact on IoT-enabled communication. This study combines virtual network function (VNF) technology with software -defined networking (SDN) called virtual network function software-defined networking (VNFSDN). The adoption of the VNFSDN approach has the potential to enhance network security and efficiency while reducing the risk of cyberattacks. This approach supports IoT devices that can analyze large volumes of data in real time. The proposed VNFSDN can dynamically adapt to changing security requirements and network conditions for IoT devices. VNFSDN uses threat filtration and threat-capturing and decision-driven algorithms to minimize cyber risks for IoT devices and enhance network performance. Additionally, the integrity of IoT devices is safeguarded by addressing the three risk categories of data manipulation, insertion, and deletion. Furthermore, the prioritized delegated proof of stake (PDPoS) consensus variant is integrated with VNFSDN to combat attacks. This variant addresses the scalability issue of blockchain technology by providing a safe and adaptable environment for IoT devices that can quickly be scaled up and down to pull together the changing demands of the organization, allowing IoT devices to efficiently utilize resources. The PDPoS variant provides flexibility to IoT devices to proactively respond to potential security threats, preventing or mitigating the impact of cyberattacks. The proposed VNFSDN dynamically adapts to the changing security requirements and network conditions, improving network resiliency and enabling proactive threat detection. Finally, we compare the proposed VNFSDN to existing state-of-the-art approaches. According to the results, the proposed VNFSDN has a 0.08 ms minimum response time, a 2% packet loss rate, 99.5% network availability, a 99.36% threat detection rate, and a 99.77% detection accuracy with 1% malicious nodes.

Funder

National Research Foundation of Korea

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Deanship of Scientific Research, Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain and AI for Collaborative Intrusion Detection in 6G-enabled IoT Networks;2024 IEEE 25th International Conference on High Performance Switching and Routing (HPSR);2024-07-22

2. Insights into Cybercrime Detection and Response: A Review of Time Factor;Information;2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3