An Improved YOLOv5-Based Lightweight Submarine Target Detection Algorithm

Author:

Mei Likun1,Chen Zhili1

Affiliation:

1. School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

Submarine recognition plays a critical role in maritime security and military defense. However, traditional submarine recognition algorithms face limitations in feature representation capability and robustness. Additionally, deploying deep learning methods on embedded and mobile platforms presents a bottleneck. To address these challenges, we propose an innovative and practical approach—an improved YOLOv5-based lightweight submarine automatic recognition detection algorithm. Our method leverages the Feature Pyramid based on MobileNetV3 and the C3_DS module to reduce computation and parameter complexity while ensuring high precision in submarine recognition. The integration of the adaptive neck from the SA-net strategy further mitigates missed detections, significantly enhancing the accuracy of submarine target detection and recognition. We evaluated our improved model on a submarine dataset, and the results demonstrate remarkable advancements in Precision, Recall, and mAP0.5, with respective increases of 8.54%, 6.02%, and 3.36%. Moreover, we achieved a notable reduction of 34.1% in parameter quantity and 67.9% in computational complexity, showcasing its lightweight effects. Overall, our proposed method introduces novel improvements to submarine recognition, addressing existing limitations and offering practical benefits for real-world deployment on embedded and mobile platforms. The enhanced performance in precision and recall metrics, coupled with reduced computational requirements, emphasizes the significance of our approach in enhancing maritime security and military applications.

Funder

Shaanxi Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3