Multi-Type Missing Imputation of Time-Series Power Equipment Monitoring Data Based on Moving Average Filter–Asymmetric Denoising Autoencoder

Author:

Jiang Ling1ORCID,Gu Juping12ORCID,Zhang Xinsong3,Hua Liang3,Cai Yueming4

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. School of Electrical and Information Engineering, Suzhou University of Science and Technology, Suzhou 215101, China

3. School of Electrical Engineering, Nantong University, Nantong 226019, China

4. NARI Technology Company Limited, NARI Group Corporation, Nanjing 211106, China

Abstract

Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem—missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation.

Funder

Key Program of National Natural Science Foundation of China

National Natural Science Foundation of China

Key Research and Development Plan of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3