Holistic 3D Model of an Urban Area in Norway: An Integration of Geophysical, Geotechnical, Remote Sensing, and Geological Methods

Author:

Gutierrez Ivan1ORCID,Weibull Wiktor1ORCID,Watson Lisa1ORCID,Olsen Thomas Meldahl1ORCID,Escalona Alejandro1

Affiliation:

1. Department of Energy Resources, University of Stavanger, P.O. Box 8600, 4036 Stavanger, Norway

Abstract

Understanding the distribution and characterization of natural and non-natural materials on the surface and near-subsurface is important for the development of infrastructure projects. This may be a challenge in highly urbanized areas, where outcrops are scarce, and anthropogenic activities have altered the morphological expression of the landscape. This study tests the integration of ground-penetrating radar (GPR), borehole drilling, aerial imagery, geological mapping, and aerial laser scanning as complementary mapping tools for determining the stratigraphy of glacial and post-glacial Quaternary sediments, the depth to the bedrock, and the distribution of anthropogenic material in Mosvatnet, a lake in Stavanger, Norway. The integration proved to be efficient and enabled the generation of a 3D holistic model, which provided a broad understanding of the subsurface geology and the induced anthropogenic changes in the area through time. Bedrock, till, fluvioglacial, and lacustrine geological units were modeled. Accumulations of post-glacial organic matter were mapped, and the distribution of non-natural infill material was determined. The interpreted dataset suggests that the eastern shoreline of Mosvatnet has artificially prograded about one hundred meters westward since the 1930s and the elevation of the corresponding area has increased by about ten meters relative to the lake level.

Funder

Norwegian Ministry of Education and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3