A Lightweight Dual-Branch Swin Transformer for Remote Sensing Scene Classification

Author:

Zheng Fujian1ORCID,Lin Shuai2,Zhou Wei3,Huang Hong1ORCID

Affiliation:

1. Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China

2. Shandong Non-Metallic Materials Institute, Linyi 250031, China

3. School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

The main challenge of scene classification is to understand the semantic context information of high-resolution remote sensing images. Although vision transformer (ViT)-based methods have been explored to boost the long-range dependencies of high-resolution remote sensing images, the connectivity between neighboring windows is still limited. Meanwhile, ViT-based methods commonly contain a large number of parameters, resulting in a huge computational consumption. In this paper, a novel lightweight dual-branch swin transformer (LDBST) method for remote sensing scene classification is proposed, and the discriminative ability of scene features is increased through combining a ViT branch and convolutional neural network (CNN) branch. First, based on the hierarchical swin transformer model, LDBST divides the input features of each stage into two parts, which are then separately fed into the two branches. For the ViT branch, a dual multilayer perceptron structure with a depthwise convolutional layer, termed Conv-MLP, is integrated into the branch to boost the connections with neighboring windows. Then, a simple-structured CNN branch with maximum pooling preserves the strong features of the scene feature map. Specifically, the CNN branch lightens the LDBST, by avoiding complex multi-head attention and multilayer perceptron computations. To obtain better feature representation, LDBST was pretrained on the large-scale remote scene classification images of the MLRSN and RSD46-WHU datasets. These two pretrained weights were fine-tuned on target scene classification datasets. The experimental results showed that the proposed LDBST method was more effective than some other advanced remote sensing scene classification methods.

Funder

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Science and Technology Research Program of Chongqing Municipal Education Commission

Cooperation project between Chongqing Municipal undergraduate universities and institutes affiliated to the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3