Micromotion Feature Extraction with VEMW Radar Based on Rotational Doppler Effect

Author:

Lv Kun1ORCID,Ma Hui1,Jiang Xinrui2,Bai Jian2,Liu Hongwei1

Affiliation:

1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

2. Science and Technology on Millimeter-Wave Laboratory, Beijing Institute of Remote-Sensing Equipment, Beijing 100854, China

Abstract

Micro-Doppler (m-D) analysis is the most effective mechanism for detecting rotating targets or components; however, it fails when the target rotation plane is perpendicular to the radar line of sight (LOS). The vortex electromagnetic wave (VEMW) provides a unconventional structure of wavefront phase modulation on the cross-plane of the radar LOS, on which the radial m-D vanishes while the rotational Doppler (RD) appears. In the absence of the position of rotation center, this paper focuses on the micromotion parameters estimation based on RD effect for rotating target, and then proposes an estimation procedure, referred to as the two-step method. The micromotion parameters of the rotating target include the rotation attitude, the rotation radius and the position of the rotation center while the latter is coupled to the former two. Firstly, the micromotion parameters are roughly estimated based on the RD curve parameters obtained from the time-frequency (TF) spectrum of the received signal. Secondly, the maximum likelihood estimation (MLE) is used to accurately estimate the micromotion parameters. In addition, the Cramér–Rao bound (CRB) of parameter estimation is derived. The simulation studies the influencing factors of estimation performance and verifies that the proposed estimation method can provide excellent estimation accuracy of the micromotion parameters.

Funder

National Natural Science Foundation of China

Postdoctoral Innovation Talent Support Program

National Defense Foundation of China

China Postdoctoral Foundation

National Science Fund for Distin-guished Young Scholars

Fund for Foreign Scholars in University Research and Teaching Programs

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3