Megaspore Chromosome Doubling in Eucalyptus urophylla S.T. Blake Induced by Colchicine Treatment to Produce Triploids

Author:

Yang Jun,Wang Jianzhong,Liu Zhao,Xiong Tao,Lan Jun,Han Qiang,Li YunORCID,Kang Xiangyang

Abstract

Triploids generally provide an advantage in vegetative growth in forest trees. However, the technique of triploid breeding is still an open field in the Eucalyptus tree species. This study aims to explore the colchicine treatment technique for megaspore chromosome doubling to establish triploids in this tree species. Cytological observation on microsporogenesis and megasporogenesis was carried out to guide megaspore chromosome doubling induced by colchicine treatment. Ploidy level in progenies was detected by flow cytometry and somatic chromosome counting. A relationship between microsporogenesis and megasporogenesis was established to guide the colchicine treatment. Seven triploids were obtained in the progenies, and the highest efficiency of triploid production was 6.25% when the flower buds underwent a 0.25% colchicine solution treatment for 6 h using an aspiration method seven days after the first observation of leptotene during microsporogenesis on the floral branch. Cytological analysis showed that the megasporocyte from leptotene to diakinesis may be the optimal period for megaspore chromosome doubling by colchicine treatment. Plant height, ground diameter, leaf area, and the photosynthetic parameter of triploid eucalypt were significantly higher than those of the diploid plant at 6 months old. Hybridization with 2n megaspores induced by colchicine treatment is an effective way for Eucalyptus triploid breeding. These results should accelerate the development of advanced germplasms in this tree species.

Publisher

MDPI AG

Subject

Forestry

Reference59 articles.

1. The genome of Eucalyptus grandis

2. The Eucalyptus: A Natural and Commercial History of the Gum Tree;Doughty,2000

3. Eucalyptus Universalis, Global Cultivated Eucalypt Forests Map 2008https://www.git-forestry.com

4. Ecosystem Goods and Services from Plantation Forests;Bauhus,2000

5. The potential for Eucalyptus as a wood fuel in the UK

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3