Shrinkage Cracking of Concrete Slabs-On-Grade: A Numerical Parametric Study

Author:

Tiberti GiuseppeORCID,Mudadu Antonio,Barragan Bryan,Plizzari Giovanni

Abstract

Industrial pavements are thin slabs on a continuous support subjected to restrained shrinkage and loads. The use of fibers as an alternative reinforcement to steel welded wire mesh and rebars is today an extensive practice for the reinforcement of concrete slabs-on-grade. Despite the widespread use of fiber reinforcement, the corresponding benefits in controlling cracking phenomena due to shrinkage are generally not considered in the design process of Fiber Reinforced Concrete (FRC) slabs-on-grade. The post-cracking performance provided by glass macro-fibers at low crack openings is particularly convenient in structures with a high degree of redundancy. Referring to service conditions, it is well known that concrete shrinkage as well as thermal effects tend to be the principal reasons for the initial crack formation in slabs-on-grade. A numerical study on the risk of cracking due to shrinkage in ground-supported slabs is presented herein. Special attention is devoted to the evaluation of the beneficial effects of glass fibers in controlling cracking phenomena due to shrinkage. The numerical analyses are carried out on jointless pavements of different sizes. Since shrinkage stresses in slabs-on-grade are considerably influenced by external constraints which limit the contractions, different subgrade conditions have been also considered.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Reference45 articles.

1. Guide for Concrete Floor and Slab Construction,1996

2. Design of Slabs on Grade,1997

3. Istruzioni per la progettazione, l’esecuzione ed il controllo delle pavimentazioni di calcestruzzo https://www.cnr.it/it/node/2631

4. Concrete Industrial Ground Floors: A Guide to Design and Construction,2003

5. Design of glass fiber reinforced concrete floors according to the fib Model Code 2010;Barragan;ACI Spec. Publ.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3