Abstract
The image stitching process is based on the alignment and composition of multiple images that represent parts of a 3D scene. The automatic construction of panoramas from multiple digital images is a technique of great importance, finding applications in different areas such as remote sensing and inspection and maintenance in many work environments. In traditional automatic image stitching, image alignment is generally performed by the Levenberg–Marquardt numerical-based method. Although these traditional approaches only present minor flaws in the final reconstruction, the final result is not appropriate for industrial grade applications. To improve the final stitching quality, this work uses a RGBD robot capable of precise image positing. To optimize the final adjustment, this paper proposes the use of bio-inspired algorithms such as Bat Algorithm, Grey Wolf Optimizer, Arithmetic Optimization Algorithm, Salp Swarm Algorithm and Particle Swarm Optimization in order verify the efficiency and competitiveness of metaheuristics against the classical Levenberg–Marquardt method. The obtained results showed that metaheuristcs have found better solutions than the traditional approach.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献