Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat Data

Author:

Markogianni Vassiliki,Kalivas Dionissios,Petropoulos George P.ORCID,Dimitriou EliasORCID

Abstract

Assessing chlorophyll-a (Chl-a) pigments in complex inland water systems is of key importance as this parameter constitutes a major ecosystem integrity indicator. In this study, a methodological framework is proposed for quantifying Chl-a pigments using Earth observation (EO) data from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 8 Operational Land Imager (OLI) sensors. The first step of the methodology involves the implementation of stepwise multiple regression (MLR) analysis of the available Chl-a dataset. Then, principal component analysis (PCA) is performed to explore Greek lakes’ potential interrelationships based on their Chl-a values in conjunction with certain criteria: their characteristics (artificial/natural), typology, and climatic type. Additionally, parameters such as seasonal water sampling and the date difference between sampling and satellite overpass are taken into consideration. Next, is implemented a stepwise multiple regression analysis among different groups of cases, formed by the criteria indicated from the PCA itself. This effort aimed at exploring different remote sensing-derived Chl-a algorithms for various types of lakes. The practical use of the proposed approach was evaluated in a total of 50 lake water bodies (natural and artificial) from 2013–2018, constituting the National Lake Network Monitoring of Greece in the context of the Water Framework Directive (WFD). All in all, the results evidenced the suitability of Landsat data when used with the proposed technique to estimate log-transformed Chl-a. The proposed scheme resulted in the development of models separately for natural (R = 0.78; RMSE = 1.3 μg/L) and artificial lakes (R = 0.76; RMSE = 1.29 μg/L), while the model developed without criteria proved weaker (R = 0.65; RMSE = 1.85 μg/L) in comparison to the other ones examined. The methodological framework proposed herein can be used as a useful resource toward a continuous monitoring and assessment of lake water quality, supporting sustainable water resources management.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3