Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin

Author:

Bofana JoséORCID,Zhang Miao,Nabil MohsenORCID,Wu BingfangORCID,Tian FuyouORCID,Liu Wenjun,Zeng Hongwei,Zhang NingORCID,Nangombe Shingirai S.,Cipriano Sueco A.,Phiri ElijahORCID,Mushore Terence DarlingtonORCID,Kaluba Peter,Mashonjowa Emmanuel,Moyo Chrispin

Abstract

Having updated knowledge of cropland extent is essential for crop monitoring and food security early warning. Previous research has proposed different methods and adopted various datasets for mapping cropland areas at regional to global scales. However, most approaches did not consider the characteristics of farming systems and apply the same classification method in different agroecological zones (AEZs). Furthermore, the acquisition of in situ samples for classification training remains challenging. To address these knowledge gaps and challenges, this study applied a zone-specific classification by comparing four classifiers (random forest, the support vector machine (SVM), the classification and regression tree (CART) and minimum distance) for cropland mapping over four different AEZs in the Zambezi River basin (ZRB). Landsat-8 and Sentinel-2 data and derived indices were used and synthesized to generate thirty-five layers for classification on the Google Earth Engine platform. Training samples were derived from three existing landcover datasets to minimize the cost of sample acquisitions over the large area. The final cropland map was generated at a 10 m resolution. The performance of the four classifiers and the viability of training samples were analysed. All classifiers presented higher accuracy in cool AEZs than in warm AEZs, which may be attributed to field size and lower confusion between cropland and grassland classes. This indicates that agricultural landscape may impact classification results regardless of the classifiers. Random forest was found to be the most stable and accurate classifier across different agricultural systems, with an overall accuracy of 84% and a kappa coefficient of 0.67. Samples extracted over the full agreement areas among existing datasets reduced uncertainty and provided reliable calibration sets as a replacement of costly in situ measurements. The methodology proposed by this study can be used to generate periodical high-resolution cropland maps in ZRB, which is helpful for the analysis of cropland extension and abandonment as well as intensity changes in response to the escalating population and food insecurity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3