A Classified Adversarial Network for Multi-Spectral Remote Sensing Image Change Detection

Author:

Wu YueORCID,Bai Zhuangfei,Miao Qiguang,Ma Wenping,Yang Yuelei,Gong Maoguo

Abstract

Adversarial training has demonstrated advanced capabilities for generating image models. In this paper, we propose a deep neural network, named a classified adversarial network (CAN), for multi-spectral image change detection. This network is based on generative adversarial networks (GANs). The generator captures the distribution of the bitemporal multi-spectral image data and transforms it into change detection results, and these change detection results (as the fake data) are input into the discriminator to train the discriminator. The results obtained by pre-classification are also input into the discriminator as the real data. The adversarial training can facilitate the generator learning the transformation from a bitemporal image to a change map. When the generator is trained well, the generator has the ability to generate the final result. The bitemporal multi-spectral images are input into the generator, and then the final change detection results are obtained from the generator. The proposed method is completely unsupervised, and we only need to input the preprocessed data that were obtained from the pre-classification and training sample selection. Through adversarial training, the generator can better learn the relationship between the bitemporal multi-spectral image data and the corresponding labels. Finally, the well-trained generator can be applied to process the raw bitemporal multi-spectral images to obtain the final change map (CM). The effectiveness and robustness of the proposed method were verified by the experimental results on the real high-resolution multi-spectral image data sets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3