An Experimental Study on Performance and Structural Improvements of a Novel Elutriator

Author:

Dong Jipeng,Zhang PanORCID,Wang Weiwen,Li Jianlong,Chen Guanghui

Abstract

During the transportation and packaging of low density polyethylene (LDPE) granular materials, fine dusts such as floccules, powder and fiber will be produced, which pollute the environment, affect product quality and generate fire hazards. In this work, the separation performance of fine dust and optimal operating conditions of an improved elutriator were investigated experimentally. Experiments were carried out to investigate the effects of air speed, feeding speed, and grid layout on the removal efficiency of fine particles. Experimental data showed that the separation efficiency of the novel elutriator ranged from 96% to 98.50%, which was more stable and an average of 51.44% higher than that of the original elutriator. By setting internals and improving the structure, the gas flow field in the equipment was regulated, the particle dispersion was intensified, and the static electricity was eliminated, which significantly improved the separation efficiency of fine dust.

Funder

Natural Science Foundation of Shandong Province

Qingdao Science and Technology Plan Application Foundation Research Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3