Reduced-Order Modeling and Control of Heat-Integrated Air Separation Column Based on Nonlinear Wave Theory

Author:

Cong Lin1ORCID,Li Xu1

Affiliation:

1. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

The process of low-temperature air separation consumes a significant amount of energy. Internal heat-integrated distillation technology has considerable energy-saving potential. Therefore, the combination of low-temperature air separation and heat-integrated distillation technology has led to the development of a heat-integrated air separation column (HIASC). Due to the heat integration and the inherent complexity of air separation, the modeling and control of this process poses significant challenges. This paper first introduces the nonlinear wave theory into the HIASC, derives the expression for the velocity of the concentration distribution curve movement and the curve describing function, and then establishes a nonlinear wave model. Compared to the traditional mechanical models, this approach greatly reduces the number of differential equations and variables while ensuring an accurate description of the system characteristics. Subsequently, based on the wave model, a model predictive control scheme is designed for the HIASC. This scheme is compared with two conventional control schemes: PID and a general model control. The simulation results demonstrate that MPC outperforms the other control schemes from the response curves and performance metrics.

Funder

Natural Science Foundation of Shandong Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3