Numerical Study on the Flow and Structural Characteristics of a Large High Head Prototype Pump-Turbine under Different Operating Conditions

Author:

Ru Songnan1,Zhang Shaozheng2ORCID,Zhou Kaitao1,Huang Xingxing23ORCID,Huang Wenlong1,Wang Zhengwei2ORCID

Affiliation:

1. Fujian Xiamen Pumped Storage Co., Ltd., Xiamen 361000, China

2. State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3. S.C.I.Energy GmbH, Future Energy Research Institute, Seidengasse 17, 8706 Zurich, Switzerland

Abstract

During the operation of pumped storage power stations, complex operating conditions can lead to different internal flow characteristics, which can cause different vibration characteristics or even damage to the structural components of the pump-turbine units. The time–frequency characteristics of the structural components’ response are of great significance for the safe operation of the unit. In this study, a three-dimensional flow field and structural field model of a large high head prototype pump-turbine is built in order to study the flow and the flow-induced dynamic response characteristics in different turbine operating conditions. The analyzed results show that the maximum deformation occurs at the inner head cover, and the maximum value of stress is located at the fillets on the outlet side of the stay vanes. Under the 50% load condition, the vortices in the runner caused by changes in the opening of the guide vanes result in the main response frequency of 4 fn of the stationary components. The research results can provide references for the structural optimization design of other pump-turbine units.

Funder

State Grid Xinyuan Company LTD. of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3