Evaluation of Polyurethane Foam Derived from the Liquefied Driftwood Approaching for Untapped Biomass

Author:

Masuda Go1,Nagao Ayana1,Wang Weiqian1ORCID,Wang Qingyue1ORCID

Affiliation:

1. Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

Abstract

Nowadays, climate change has become a serious concern, and more attention has been drawn to utilizing biomass sources instead of fossil sources and how petroleum chemical plastics should be reduced or replaced with bio-based materials. In this study, the optimized condition of liquefaction of driftwood was examined. There was a concern that driftwood might have some decay and chemical change. However, according to the Organic Micro Element Analyzer (CHN analyzer) test and Klason lignin and Wise methods, the results proved that lignin content (37.5%), holocellulose content (66.9%), and CHN compositions were very similar to regular wood. The lowest residue content of bio-polyols was produced using liquefaction conditions of 150 °C, reaction time of 180 min, catalyst content of 10%w/w, and 12.5%w/w driftwood loading. Polyurethane foam (PUF) derived from the liquefaction of driftwood and bio-based cyanate was prepared. The PUF prepared from the liquefaction of the driftwood exhibited slightly decreased thermal durability but was superior in terms of 3-time faster biodegradation and 2.8-time increased water adsorption rate compared to pure petroleum-based PUF. As a result, it was shown that driftwood can be identified as a biomass resource for biodegradable PUF.

Funder

Special Funds for Innovative Area Research

Grant-in-Aid for Scientific Research of Japanese Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference31 articles.

1. A Current Review of Social Impact Assessment on Sustainable Biomass/Biofuel Development;Morimoto;J. Jpn. Inst. Energy,2009

2. Berndes, G., Abt, B., Asikainen, A., Cowie, A., Dale, V., Egnell, G., Lindner, M., Marelli, L., Paré, D., and Pingoud, K. (2018). From Science to Policy 3, European Forest Institute.

3. Biofuel from rice straw;Sharma;J. Clean. Prod.,2020

4. Food waste biorefinery: Sustainable strategy for circular bioeconomy;Dahiya;Bioresour. Technol.,2018

5. A Jatropha biomass as renewable materials for biocomposites and its applications;Khalil;Renew. Sustain. Energy Rev.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3