Wood Cellulose Nanofibers Grafted with Poly(ε-caprolactone) Catalyzed by ZnEu-MOF for Functionalization and Surface Modification of PCL Films

Author:

Pang Jinying12,Jiang Tanlin23ORCID,Ke Zhilin14,Xiao Yu4,Li Weizhou35,Zhang Shuhua14ORCID,Guo Penghu4

Affiliation:

1. Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China

3. College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

4. Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China

5. School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China

Abstract

Renewable cellulose nanofiber (CNF)-reinforced biodegradable polymers (such as polycaprolactone (PCL)) are used in agriculture, food packaging, and sustained drug release. However, the interfacial incompatibility between hydrophilic CNFs and hydrophobic PCL has limited further application as high-performance biomaterials. In this work, using a novel ZnEu-MOF as the catalyst, graft copolymers (GCL) with CNFs were grafted with poly(ε-caprolactone) (ε-CL) via homogeneous ring-opening polymerization (ROP), and used as strengthening/toughening nanofillers for PCL to fabricate light composite films (LCFs). The results showed that the ZnEu-MOF ([ZnEu(L)2(HL)(H2O)0.39(CH3OH)0.61]·H2O, H2L is 5-(1H-imidazol-1-yl)-1,3-benzenedicarboxylic acids) was an efficient catalyst, with low toxicity, good stability, and fluorescence emissions, and the GCL could efficiently promote the dispersion of CNFs and improve the compatibility of the CNFs and PCL. Due to the synergistic effect of the ZnEu-MOF and CNFs, considerable improvements in the mechanical properties and high-intensity fluorescence were obtained in the LCFs. The 4 wt% GCL provided the LCF with the highest strength and elastic modulus, which increased by 247.75% and 109.94% compared to CNF/PCL, respectively, showing the best elongation at break of 917%, which was 33-fold higher than CNF/PCL. Therefore, the ZnEu-MOF represented a novel bifunctional material for ROP reactions and offered a promising modification strategy for preparing high-performance polymer composites for agriculture and biomedical applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3