3D Magnonic Conduits by Direct Write Nanofabrication

Author:

Lamb-Camarena Sebastian12ORCID,Porrati Fabrizio3ORCID,Kuprava Alexander3ORCID,Wang Qi4ORCID,Urbánek Michal5ORCID,Barth Sven3ORCID,Makarov Denys6ORCID,Huth Michael3ORCID,Dobrovolskiy Oleksandr V.1ORCID

Affiliation:

1. Faculty of Physics, Nanomagnetism and Magnonics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

2. Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

3. Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany

4. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

5. CEITEC BUT, Brno University of Technology, 61200 Brno, Czech Republic

6. Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany

Abstract

Magnonics is a rapidly developing domain of nanomagnetism, with application potential in information processing systems. Realisation of this potential and miniaturisation of magnonic circuits requires their extension into the third dimension. However, so far, magnonic conduits are largely limited to thin films and 2D structures. Here, we introduce 3D magnonic nanoconduits fabricated by the direct write technique of focused-electron-beam induced deposition (FEBID). We use Brillouin light scattering (BLS) spectroscopy to demonstrate significant qualitative differences in spatially resolved spin-wave resonances of 2D and 3D nanostructures, which originates from the geometrically induced non-uniformity of the internal magnetic field. This work demonstrates the capability of FEBID as an additive manufacturing technique to produce magnetic 3D nanoarchitectures and presents the first report of BLS spectroscopy characterisation of FEBID conduits.

Funder

Vienna Doctoral School in Physics

MEYS CR

Austrian Science Fund

German Research Foundation

COST

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3