First-Principles Study of B16N16 Cluster-Assembled Porous Nanomaterials

Author:

Wang Xin1,Zhang Xiaoyue1,Liu Liwei1,Song Tielei1,Liu Zhifeng1,Cui Xin1ORCID

Affiliation:

1. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China

Abstract

Owing to the similar valence electron structures between the B-N bond and the C-C bond, boron nitride, similar to carbon, can form abundant polymorphs with different frameworks, which possess rich mechanical and electronic properties. Using the hollow, cage-like B16N16 cluster as building blocks, here, we established three new BN polymorphs with low-density porous structures, termed Cub-B16N16, Tet-B16N16, and Ort-B16N16, which have cubic (P4¯3m), tetragonal (P4/nbm), and orthomorphic (Imma) symmetries, respectively. Our density functional theory (DFT) calculations indicated that the existence of porous structure Cub-B16N16, Tet-B16N16, and Ort-B16N16 were not only energetically, dynamically, thermally and mechanically stable, they were even more stable than some known phases, such as sc-B12N12 and Hp-BN. The obtained Pugh’s ratio showed that the Cub-B16N16 and Tet-B16N16 structures were brittle materials, but Ort-B16N16 was ductile. The analysis of ideal strength, Young’s moduli, and shear moduli revealed that the proposed new phases all exhibited sizable mechanical anisotropy. Additionally, the calculation of electronic band structures and density of states showed that they were all semiconducting with a wide, indirect band gap (~3 eV). The results obtained in this work not only identified three stable BN polymorphs, they also highlighted a bottom-up way to obtain the desired materials with the clusters serving as building blocks.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3