Rapid Microwave-Assisted Synthesis of ZnIn2S4 Nanosheets for Highly Efficient Photocatalytic Hydrogen Production

Author:

Chang Yu-Cheng1ORCID,Chiao Yung-Chang1,Hsu Po-Chun2

Affiliation:

1. Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan

2. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA

Abstract

In this study, a facile and rapid microwave-assisted synthesis method was used to synthesize In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4 nanosheets with sulfur vacancies. The two-dimensional semiconductor photocatalysts of ZnIn2S4 nanosheets were characterized by XRD, FESEM, BET, TEM, XPS, UV–vis diffuse reflectance, and PL spectroscopy. The ZnIn2S4 with sulfur vacancies exhibited an evident energy bandgap value of 2.82 eV, as determined by UV–visible diffuse reflectance spectroscopy, and its energy band diagram was obtained through the combination of XPS and energy bandgap values. ZnIn2S4 nanosheets exhibited about 33.3 and 16.6 times higher photocatalytic hydrogen production than In2S3 nanosheets and ZnS nanosheets, respectively, under visible-light irradiation. Various factors, including materials, sacrificial reagents, and pH values, were used to evaluate the influence of ZnIn2S4 nanosheets on photocatalytic hydrogen production. In addition, the ZnIn2S4 nanosheets revealed the highest photocatalytic hydrogen production from seawater, which was about 209.4 and 106.7 times higher than that of In2S3 nanosheets and ZnS nanosheets, respectively. The presence of sulfur vacancies in ZnIn2S4 nanosheets offers promising opportunities for developing highly efficient and stable photocatalysts for photocatalytic hydrogen production from seawater under visible-light irradiation.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3