Surface Oxygen Species in Metal Oxide Photoanodes for Solar Energy Conversion

Author:

Ouyang Jie1,Lu Qi-Chao1,Shen Sheng1,Yin Shuang-Feng1

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Abstract

Converting and storing solar energy directly as chemical energy through photoelectrochemical devices are promising strategies to replace fossil fuels. Metal oxides are commonly used as photoanode materials, but they still encounter challenges such as limited light absorption, inefficient charge separation, sluggish surface reactions, and insufficient stability. The regulation of surface oxygen species on metal oxide photoanodes has emerged as a critical strategy to modulate molecular and charge dynamics at the reaction interface. However, the precise role of surface oxygen species in metal oxide photoanodes remains ambiguous. The review focuses on elucidating the formation and regulation mechanisms of various surface oxygen species in metal oxides, their advantages and disadvantages in photoelectrochemical reactions, and the characterization methods employed to investigate them. Additionally, the article discusses emerging opportunities and potential hurdles in the regulation of surface oxygen species. By shedding light on the significance of surface oxygen species, this review aims to advance our understanding of their impact on metal oxide photoanodes, paving the way for the design of more efficient and stable photoelectrochemical devices.

Funder

NSFC

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3